משפט דיריכילה על סדרות חשבוניות

פרט להיותו מעניין (ואפילו שימושי) לכשעצמו, משפט דיריכלה יכול להיחשב לתוצאה המשמעותית הראשונה של תורת המספרים האנליטית – אולי אפילו לתוצאה שפתחה את התחום והראתה שאפשר להוכיח דברים לא טריוויאליים, שהניסוח שלהם הוא אלגברי למהדרין, בעזרת שיטות אנליטיות, וזאת כשלא ידועות על שיטות אלגבריות פשוטות יותר (בכך הוא שונה מהוכחת אוילר על קיום אינסוף ראשוניים, …

הוכחת אוילר לקיום אינסוף ראשוניים

אני עוזב לבינתיים את העיסוק במשפטי גדל על מנת לקרוא עוד כמה ספרים בנושא, ולכן כתחליף החלטתי להציג נושא שונה לגמרי – תורת המספרים האנליטית. הרעיון הבסיסי של תורת המספרים הוא חקר תכונותיהם של המספרים הטבעיים; ה"אנליטית" עוסק בשיטות שמשתמשים בהן למחקר הזה – שימוש בכלים מתחום האנליזה המתמטית כמו גבולות, טורים והתכנסויות. זה תחום …

משפט אי השלמות הראשון של גדל – איך (בערך) מוכיחים אותו?

הקדמה הרעיון המפורסם ביותר בהוכחת משפט אי השלמות הראשון של גדל (איני חושב שאוכיח כאן את השני, לפחות לא כעת) הוא הרעיון של לכסון – שיטה ששימשה כבר את גאורג קנטור בהוכחה שלו לכך שעוצמת הממשיים אינה שווה לעוצמת הטבעיים. כמעט בכל תיאור של משפט גדל מזכירים את הדמיון שלו לפרדוקס השקרן (הפרדוקס שבו איש …

משפטי אי השלמות של גדל – מה הם כן אומרים?

עד היום נמנעתי מלעסוק כאן במשפטי אי השלמות ("משפטי האי-שלמות"? זה אולי תקין יותר לשונית אך הצליל לא מוצא חן בעיני) של גדל, מכיוון שכבר קיים תיאור מצויין שלהם בעברית עבור הקהל הרחב (יחסית), במאמר של אלון עמית באתר "האייל הקורא". עם זאת, בפוסט הקודם עסקתי בקיום מודלים שונים לאותה תורה ובמשפט השלמות של גדל, …